Memory Switches in Chemical Reaction Space

نویسندگان

  • Naren Ramakrishnan
  • Upinder S. Bhalla
چکیده

Just as complex electronic circuits are built from simple Boolean gates, diverse biological functions, including signal transduction, differentiation, and stress response, frequently use biochemical switches as a functional module. A relatively small number of such switches have been described in the literature, and these exhibit considerable diversity in chemical topology. We asked if biochemical switches are indeed rare and if there are common chemical motifs and family relationships among such switches. We performed a systematic exploration of chemical reaction space by generating all possible stoichiometrically valid chemical configurations up to 3 molecules and 6 reactions and up to 4 molecules and 3 reactions. We used Monte Carlo sampling of parameter space for each such configuration to generate specific models and checked each model for switching properties. We found nearly 4,500 reaction topologies, or about 10% of our tested configurations, that demonstrate switching behavior. Commonly accepted topological features such as feedback were poor predictors of bistability, and we identified new reaction motifs that were likely to be found in switches. Furthermore, the discovered switches were related in that most of the larger configurations were derived from smaller ones by addition of one or more reactions. To explore even larger configurations, we developed two tools: the "bistabilizer," which converts almost-bistable systems into bistable ones, and frequent motif mining, which helps rank untested configurations. Both of these tools increased the coverage of our library of bistable systems. Thus, our systematic exploration of chemical reaction space has produced a valuable resource for investigating the key signaling motif of bistability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-destructive erasable molecular switches and memory using light-driven twisting motions.

Novel types of chiroptical switches and memory with non-destructive readout that are entirely optically controlled for molecular devices in solution and neat films.

متن کامل

Integrated Scheduling and Buffer Management Scheme for Input Queued Switches under Extreme Traffic Conditions

This paper addresses scheduling and memory management in input queued switches having finite buffer space to improve the performance in terms of throughput and average delay. Most of the prior works on scheduling related to input queued switches assume infinite buffer space. In practice, buffer space being a finite resource, special memory management scheme becomes essential. We introduce a buf...

متن کامل

Rhythms Emerge in a Collection of 'Blind Chemicals' by the Use of Genetic Switches.

This paper presents a new computational method in the modeling and simulation of gene expression by introducing the artificial chemical system. The artificial chemical system is specified by its four items: (1) components (five kinds of particles and DNA with Genetic Switches); (2) space (2-dimensional polar grids); (3) simple reaction rules (construction and destruction of molecules, etc.); (4...

متن کامل

Switch Architecture for Efficient Transfer of High - Volume Data in Distributed Computing Environment

to be dropped by the TCP layer of the end systems. The redundant packets in the retransmitted segments clog the network switches and thus exagerating the congestion and further packet loss. In distributed computing environment that involves high-volume data transfers, it is very important to minimize packet loss at intermediate switches/routers by maximizing the utilization of memory resources ...

متن کامل

Bottom-up construction of in vitro switchable memories.

Reaction networks displaying bistability provide a chemical mechanism for long-term memory storage in cells, as exemplified by many epigenetic switches. These biological systems are not only bistable but switchable, in the sense that they can be flipped from one state to the other by application of specific molecular stimuli. We have reproduced such functions through the rational assembly of dy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Computational Biology

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2008